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ABSTRACT

This thesis examines a two-person zero sum game where a submarine, after revealing

his position by causing a 'flaming datum', is hunted by a helicopter which arrives on the

scene after a time delay. Various helicopter and submarine strategies are explored and

simulation runs arc uscd to detcrmine the detection probability (payoffs) for each owin-

bination of helicopter and submarine strategy. The value of the game (detection prob-

ability) with the related optimal strategies is then obtained using linear prog'arnaming.

A modified random search equation is also derived using probabilities of detection ob-

tained from different combinations of parameters used in the game. Similar and related

games are also discussed with emphasis on the differences in assumptions made and ap-
proaches taken in order to solve the problem.
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1. INTRODUCTION

A. DESCRIPTION O0 PROBLEM

A submarine has just fired a torpedo at a ship. wcoring a direct hit. This causes the

ship to stop inunediat6-- and be in flames, hence the tern,, 'flanting" datum. The ship

on being hit immediately sends out distress calls and a sonar carry-ing helicopter

respond, by proceeding towards the "flarning" datum. It arrives on scene after a time

delay and thereafter makes repeated active sonai dips within the expanding

farthest-on-cirl0e(FOC). The term FOC is a commonly used search term which describes

all the possible positions within a circle (of area nUt2 i:), that a target can be, given a top

speed of U. There is also a time delay for each dip due to the time required for lowering

and raising the sonar transponder. Tlhe submarine on detecting each and every ping

emitted by the helicopter's sonar reacts so as to nminimize his probability of being

detected within the helicopter's limited time on station. The game can only end in two

ways; the submarine is found within the helicopter's sonar range during one of its dips

and hence is detected or the submarine is undetected during the limitcd nission time of

the lielicoptet. We consider an abstract vcrsion of this situation characterized by 1, iv

parameters:

v V - Speed of helicopter

9 U - Speed of submarine

* D - Time delay in dipping sonar

9 T, - Time for helicopter to reach edge of IOC

* R - Radius of sonar detection system

B. BACKGROUND

Search theory in military applications has usually concentrated on the idea of

attempting to find an object by moving a sensor sufficiently close to it. The object has

a definite position in space and the distance between it and the sensor is crucial. Search

theory has evolved from searching for stationary tai gets, to moving targets and

presently, to evasive targets. Stationary and moving target problems are normally

classified as one sided problems because the target does not know or make use of the

knowledge of where the searcher is. The present emphasis is on two-sided problems,



which arc more difficult to soIve. "1lese are problenms vhetc utrbcts wish to a'oaid

detection , and have the capability to do so.

The theory of Games is natur;dily applicable here since this is thle situation of a

maximizing player (searcher) wishing to maximize a payollf(for example, the probability

of detecting the target) and a minimizing player (evader) wishing to do the opposite. I;

such situations, optimal strategies of both players arc sought after as well as the value

of the game where we want to know how best one side can deny or allow the other side

an expected minimum or maximum payoff. One classical two sided game formulated by

Morse and Kimbal [Ref 11 involves searching for a submarine that is transiting a

channel of varying width that is toe long co allow the submarine to remain submerged

during the entire passage. In his book, "Geomctric Games and their Applications'

[Ref. 2] Ruckle considers a class of two-sided geometric games Gal considers two sided

search games pla.cd on networks [Ref. 31. A gocd referece for bibligographies can hz

found in Dobbie's survey of Search Theory [ReIf 41. '[his is updated bi\ Washburn's

tutorial on search theory where he covers the development of search theory up to 1926

[Ref' 51.

The author is intere.sted in the submarine evasion game first considcred by Danskin

in which a submarine, after revealing his position by causing a 'flaming' datum, is hunted

by a hclicopter which arrives at the datum after a time delay [Ref. 61. This is a special

class of two sided search games where tie target has the advantage of observing the

searcher's action, but the searcher has the advantage of speed. This advantage wili be

slowly lo:u g .s search progresses since the various positi'ns that tihe submarine can

occupy will expand with time. Related games are the one-dimen.ional helicopter

submarine gaines studied by Meinardi [Ref. 7] and more recently by Baston and Bostock

[Ref. 8]. Meinardi solves a discr,-te form of the game while Baston and Bostock solve

the continuous case. Bes.ides Danskin's game, not much work has been done on the two

dimensional case except the work by Thomas and Washburn [Ref. 9] in their paper on

dynamic search games.

C. APPROACHES

Three solution approaches will be considered:

2



1. Analytical

In the next chapter , we will see solutions to related games. The one

dimensional flarming' datum problem can be solved either by using the methods of
NMeinardi or Baston and Bostock. However, the one dimensional case is only a special

case where the search area can be considered to be a long channel with respect to the

sonar detection radius. Attempts to solve the two dimensional case have not been

clearly successful since additional simplihfing assumptions are needed. In Danskin's

game, the assumptions made (he assumes passive search) are clearly to the advantage

of the helicopter. However, in Thomas and Washburn's dipping sonar game, two major

assumptions are made, one that favours the submarine (nimbleness assumption) and

another that does not (remain motionless between dips).

2. Data Analysis

Another way" to solve the 'flamiing' datum problem is to collect and analyse real

world data. Such data may or may not be obtained from past wars, conflicts, or even

field exercises. However, such data are few, expensive and difficult to obtain. A

compromise iR to conduct a two sided search experiment as was done by Washburn in

his Expanding Area Search Experiment. [Ref. 10] However, Washburn's experiment
dierr .. froe; ou, '•,!a,;ng' datum prnblem The target is assumed to be 'blind' with no

knowledge of the searcher's position once the search commences while the searcher is

"assumed to be a ship or aeroplane continuously sweeping an a:ea. In his experiment,

different groups of NPS students are used as game players. This technique can perhaps
be used as the next stage in our attempt to solve the 'flaming' datum problem. The only

disadvantage is that the experiment will take a long time to complete since many

different people are needed.

3. Simulation Methodology
The approach taken here is to buifl multiple simulation models where Monte

Carlo runs are used to determine the - n probability when a helicopter uses a

certain stra'egy against a certain sut ,.:rategy . Two person zero sum solution

methodology is then used to solve the " _,g ;iiatrix game. This simple method allows
one to estimate the outcome quickly and rather cheaply as compared to conducting

numerous fleet exercises. It may also act as a starting point for more sophisticated

models. A more detail-d description will be given in the later chapters.

3



/
r

II. RELATED GAMES

In this chapter, two one-dimensional and two two-dimensional games related to the
- "flaming datum" problem wi]l be discussed. These are the games by Meinardi [Re['. "•],
•'-- Baston and Bostock [gef. 8], Danskin [gee 6] and Thomas and Washburn [gee 9]

_ respectively. The "flaming" datum problem can only be formulated as a one dimensional

game (in space) if the search area under consideration involves a long channel such that

the sonar detection sweep width is at least greater than the channel width. Meinardi __ ,

[Re['. 7] has solved a discrete (in time) version of such a game while more recently,
Bast•n and Bostock [Ref. 8] have solved the continuous version. In all the two

dimensional cases treated so far, many assumptions have to be made in order to solxe
the game. ]-his is evident in both Danskins and Thomas and Washburns" games.

General analytical techniques for the two-dimensional game are presently unavailable.

A. ONE DIMENSIONAL GAMES

1. A Sequentially Compounded Search Game

SMeinardi [Ref. 7] considers a multi-staged search game where the target is= i
Shiding in a row of no boxes labelled I to n0. At each stage the searcher selects a box

• and exanfines it. ]he probability of finding the target when the correct box is searched •_.,

Sis equal to q<_ 1.0. If the target is not lbund, the target may either move to a •-•--
neighbouring box or remain in the same box, and the next stage is played. "l-he target --! -
as well as the searcher keeps track of which boxes have been searched. The searcher is -'•,

dihj
limited only in the number of boxes to be searched, so that the time taken to search a •.

box or transit betveen boxes does not come into consideration. • °.E

rig,

-'N'"

1•

SI1

!
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42 51 5 6 7 8j n

Datum

Figure 1. Boxes for Meinardi's game

At the start of the game. thc target is in box 1, (see Figure 1) corresponding

to the datum. A certain time delay may occur before the first search is made. The target

can therefore be in any of the first np boxes when the first search is made. With each

stage, the number of boxes which may contain the target is augmented by one (since the

target is limited bv jumping to neighbouring boxes only). Mcinardi IRef. 7] shows that

the optimal strategies of the searcher and the target are such that they alway attempt to

Udistribute thcmselves as unifornily as possible over the number of boxes available. lHe

also shows that if q exceeds a certain critical value q,,. the target will not be able to use

such a strategy. In such a case, the target will attempt to distribute his positional

probability over whatever boxes that he can.

Meinardi derived the critical q to be

n+! -kq n' -- k

where k is the box that is searched when n boxes are available. If qq,,,,the target can

equalize its probability of being in any of the (n + 1) bcxes available in the next stage.

Since the smallest value of qc,,, is with k n, the smallest q, in the game (denoted ,.-,,)

is given by

i , .. '.. .-. ....................... ...



q c lt n o + s o0 _ 2

A

except that qc,* = 1 for a one stage game.

Here no is the initial number of boxes available at the start of the game and so is the

number of stages available in the game. It is also useful for us here to reproduce some

of his results. Case 1 shows the result for the case when the critical q value is not

exceeded while case 2 is an example of a case when q is greater than .,,

Case 1: Two stage game, for a small q.

Let F(n) be the value of the game where s + I is the number of stages of the game

remaining and n, the number of boxes available (similar notations are also used for the

optimal strategies X and 1").

The value of the game is given by

qq q
q n ° where F1-.(21 1

S+ I(2.1)

'...,n. .•n (2.2)
'00~ ( 0) .~0  .....

-• 1 ._ 1 1_!.I (2.3)
- (n= -1) n0o 1' n0 + 1 n'o" no+l

where Xand Y represent the distributions of searcher and target positions. In other

words, the searcher is equally likely to search any boxes, and the target moves in such

manner that he is equally likely to be in any box. In this case, = so the above

results are valid as long as q•-,-.

The case when q > q,.,, is more complicated. We will only show the results for the case

of a two stage game where no 2 (as solved by Meinardi). More detailed derivation can

be fcund in [Ref. 71.

. . .. . . . . . - • - i. - - - . . . ., - ."
| • _ •.. .. _ • • ... . . .) : .• - . ,- i • " - ' • "• •'•:6
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Case 2: Two stage game, q > -- , no = 2, ?c, t -

": • ~7-- 2q,( 7- q (2.4)
r 9 - 2q

with optimal strategies

_3 6- 2q
(2)= [ 9 2 ' 9 2q ] for the searcher (2.5)

4 5 - 2q
-- [ 9 - 2q 2q I for the target (2.6)

The above result shows that both the searcher and target do not equalize their

probability of being in any of the boxes available. This happens because the target is

unable to do so. To illustrate this, consider the case when q = 1 and where box 2 is

searched in the first stage of the game. Clearly, the target must be in box I in the first

stage or else it will be detected. The target is thus unable to move to box 3 at the second

stage since it is limited to moving to neighbouring boxes only. The target can therefore

only move to box 2 or remain in box I . If q is less than I, then there will be some

probability that the target will not be detected even if the correct box is selected. If the

target is initially in box 2, then there would then be some probability of the target

moving to box 3 in the second stage, but not as much as I if q>qc, . In general, the

target should equalize, as well as it can, the probability of being in any box.

2. A Helicopter-Submarine Game On The Real Line

Baston and Bostock [Ref. 8] also consider a game very similar to the flaming

datum problem. Their game can be considered to be a continuous version of Meinardi's

game [Ref. 7) since it is again a one-dimensional problem where the submarine is
assumed to be moving in a loug narrow channel. In their game, there is one helicopter

carrying j anti-submarine bombs. The helicopter ( max. velocity V) wishes to destroy

the mobi!e submarine ( max. velocity U) using its bomb. Each bomb has the same

destructive radius R and there is a. time lag D between the release of the bomb and the

-I' - •• •



bomb exploding. Thc number of bombs is analogous to the number of dips available

and the bombs destruction radius is analogous to tile sonar radius.

t=0

Vu-

A B

x=O x=L

Figure 2. One dimensional helicopter-submarine on the real line.

The notation used in their game is illustratcd in Figure 2 . The helicopter and

submarine are initially at A and B respectively, distance L apart. Ir the bomb explodes

-.... h.. distance R E• ,the, _,ubniarlne_ the-. the ..-... to the. h.lir. .r is II ,nit.

otherwise, he gets zero. Each player knows the initial position of the other player but

not their subsequent positions. They are restricted to move at their maximum speed and

instantaneous changes in vClocities are allowed. The value of the game. F is given

below:

(1j Il'hcp,; U . < R . the value is F = I regardless of the

number of bombs that the helicopter is carrying since onzly one bomb is needed. The

helicopter proceeds to point B at its maximum speed and drops his bomb there. 'Tlhe

submarine could not travel a distance greater than R, given the time the helicopter takes
L

to get to point B, +", plus the bomb activation time D.

U'L 4 I'D)
(2) Wihen V > R , the value of the game is given by

1" forlIj_< k and

r--, forj > k

S 7



where k is the unique integer greater or equal to 2 which satisfies

U(L + VDI) • R < U(L + VD)) (2.7)

(k - l)(V- -)+ - (k - 2)(T'- 1U + V

When (j > 2) bombs are available to the helicopter, an additional condition is required

in that the time delay must be small , that is, R Ž UD - L The other case where

R < UD - L is still beinig studied by Baston and Bastock.

9
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A graphical representation of the game is shown in Figure 3 . The dashed lines show

the possible positions of the submarine from B. The vertical short solid lines show where

the bombs should be dropped. Note that a feasible submarine track must intersect at

least one of those intervals. In the above example, k= 3 and the value of t'e game is

).ence, ifj= 3, the value of the game is 1 and the submarine is always destroyed.

B. TWO DIMENSIONAL GAMES

1. Helicopter Versus Submarine Search Game

Danskin iRef. 6] considers the case where the submarine has only 1 set of

strategies, i.echoose a fixed course 0 (0•:0<3600) and speed U (0•<UUma,) and adhere

to them throughout the duration of the game. lie assumes that the submarine knows

nothing useful about what the helicopter is doing and therefore sees no reason for any

changes in course or speed once selected. Danskin describes this strategy as the choice

of a point in the submaarine's 'speed circle' of radius Umn(See Figure 4). The submarine

picks this point and stays at it throughout the game. With each dip, the helicopter's

sonar detection system will cover an area of nR2 in real space or an equivalent area of
7R: .

r in the speed circle at time t (see Figure 4 ovcrleaf). Ile assumes that the helicopter

strategies are to dip at a succession of points in the speed circle such that the

corresponding covered circils do not overlap each other. ll cncc if the dips are at ,imes

t,,2 . ..... ,t. the helicopter will cut a total area A0 = nR-(# + -L + -Lr) out of the

speed circle. This is shown in Figure 4 overleaf.

11--
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Cookie cutter
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tN t4 t

Speed Circle 0 t5
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Ao
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Figure 4. Dips and Speed Circle.
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In his game, Danskin proposes that the area , A0 be squeezed into a wedge of the same

area in the speed circle. lie solves the game and shows the value to be
,40  0M- -T .This is the probability that the helicopter's wedgeý covers the point the

n t:2 'r
submarine has picked in the speed circle given that the orientation of the wedge could

be picked randomly.

Based on Danskin's assumptions, [Ref. 6] the helicopter has a better chance of
detecting the submarine than in the flaming datum problem. 1he various cookie cutter

sonar dips of the helicopter do not overlap each other. The submarine also does not

employ any evasive maneuvers.

2. Dynamic Search Games
Thomas and Washburn [Ref. 9] have solved a very similar gamc which they

termed 'dipping sonar' game. It contains all the elements of our flaming datum problem

except that the rules of motion for the submarine are revised. In their game, the

submarine is permitted to instantly choose any new position after each unsuccessful dip

by the helicopter, as long as he stays within the Farthest - on - Circle (FOC), termed the

"nimbleness" assumption. Another assumption made is that the submarine remains
,r,,eotio"dle nins•r t"h hlIh'optr,. All the'-e a qc_m_Fioft are

necessary for them to solve the game using Dynamic Programming. Briefly , the game
is solved using the following recursive equation

Q(i~t) = mnin, max,2i.v { I - Jv PUJ, k, T(ij,t)) Q(j, T(ij,t) ) (2.8)

where

" Q(it)= value of the game , the probability that none of the remaining searches
will detect the target if both sides play optimally. (i,t) represents the state of the
game w-here the submarine is in cell, i , and time , t.

" P(j,k,t) = Probability that a target in cell k will be detected by a search of cell j
begun at time t

" T(ij,t) Time at which a search of cell j can begin if a search of cell i begins at
time t

The game proceeds in the following fashion:

1. After observing (i,t) the target will choose a cell k to hide while the searcher will
choose a new cell j to search without knowing k.

13



2. If T(ij,,)>t* , the termination time , then the target wins.
Otilcrwise with - obability POj, k, 7(ij,,)) the targct is detected and searcher wins.

3. If the target is not detected , set i to j and t to T(ij.k) and return to 1.

The solution is obtained recursively with the end state Q(i, i') = I for t' >t * and

with y -(ii) and x = (xk) being probability distribution ove-r the cells for the searcher and

the target respectively. The various positions to be picked by the helicopter and the

submarine are obtained by dividing the speed circle into i cells of equal area. Applying

the game to our flaming datum problem, this dynamic search game tends to favour the

submarine on account of the nimbleness assumption. This favourable condition for the

submarine nmight be neutralised by an additional assumption that the submarine is

assumed motionless between dips. Intuitively, it seems that the nimbleness assumption

would more than outweigh the motionless assumption.

14
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111. MODELS, THEORY AND ASSUMPTIONS

A. ASSUMPTIONS

1. Submarine motion

The submarine is assumed to be moving always at a fixed speed U, once it starts

its evasive maneuvers. Instantaneous changes in course are allowed.

2. Helicopter motion

The helicopter ;s also assumed to be moving at a constant speed V, during its

search Cor the submarine. Acceleration and retardation are ignored.

3. Sonar Characteristics

The helicopter active sonar is assumed to illuminate a circular area of radius

R, perfectly on each dlip. Each dip can thus be considered to be a 'cookie cutter' where

within such a radius, detection is certain and outside it, detection is impossible. Each

UJJ)la dip isLu-edZ akC a CunstdkLL Ufn alv0 J. 1ý%LfL&'. A *413 1.3t. -, ,1

to time taken for the sonai device to be winched in and out of the watcr and time for the
signal processing unit of the sonar to check for detection.

The submarine is assumed to know the latest position of the helicopter

whenever it pings. Hlowever, this assumption was later relaxed to one in which only

bearing information is known as we later found out that among the strategies explored,

strategies that made use of this position information were domninated by those strategies

which ouRly make use of bearing information.

4. Unit speed circle

Danskin defines the speed circle to be a circle with constant radius U. Inside

this circle, a 'cookie cutter dip of the helicopter at time t, will have a radius of!Rt. In
our discussion, we will similarly use the concept of a unit speed circle which is defined

to be a circle with constant unit radius. In our case, the relative size of a 'cookie cutter'

sonar dip at time t, will have a radius of R

15
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5. Position of datum

The position of the datum is assumed to be accurately detcrmnined. This is definitely true

when the flaming datum is still afloat but in tile case that it is sunk, the last position is

assumed to be accurately known by the helicopter.

B. STRATEGIES USED !N SIMULATION MODEL

1. Submarine Strategies

The submarine has two conflicting goals. One goal is to move away from the

datam as fast as possible and hence expand the FOC rapidly. This action Fbrces the

helicopter to search in a bigger and bigger area hence reducing its search effectiveness.

The other goal is to avoid the helicopter as much as it can by moving directly away from

its last position or using some other avoidance stratcgy. This is especially important if

the helicopters last position (shown by its sonar dips) is near the submarine's position

since the helicopter favours picking successive dips nearer to each other as they

consume less of its limited mission time.

In the prelirninary studies, several avoidance strategies were explored. One

strategy involves making the submarine move perpendicular to the direction from the
helironnter's !it di' , t ' n,, inn ,t ,bAt t;nip Inctnit Th. cid•mnr;n,' i-bhbi-h liTn tie

choice of two directions will pick the direction that will bring it fWrther from the datum.

Another strategy involves making the submarine move on a course that is almost

perpendicular to the last two dips of the helicopter to ensure that it does not cut across

the assumed path of the helicopter (using the direction of the last two dips as the

helicopter course). Both of these strategies were found to be dominated by other

strategies discussed and were thus discarded. In these cases, it seems that the submarine

is making too many unnecessary changes of course and appears not to be moving much

distance across the FOC. Another strategy has the submarine move directly towards the
nelicopters last dip. This strategy was not used because it is difficult to establish the

range to adopt this strategy. There is also a suspicion that this will only have a negligible

effect on our results.
After some exploration, the number of strategies were reduced to the following

two classes of simple avoidance strategies:

* Submarine moves directly away from the last dip.

16
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e Submarine ignores the last dip and proceeds (aircctly away ' a) the flaming datum.
Tfhis strategy can be employed even if the search is passi,

It ii also uncertain whether the submarine shouu..< on the edge of the FOC

at tim" -,, since the helicopter may search at the edge. "Th: subma~ine can perhaps

r.inain near the datum and start moving after the helicopter's first dip. Hence, we will

also include r2 as another parameter for the submarine to choose ii, its strategy where

r2 is the radial distance of the submarine from the datum in the speed circle at time r,.
The submarine strategies are thus defined to be s = ( r2, avoidance strategy).

2. helieiopter Strategy

Jn buildirg the sets of strategies to be employed by the helicopter, an important

principle is that the helicopter must not adopt any strategy which has a fixed pattern

that can be exploited by the submarine. In Washburn's Expanding Area Search

Experiment [Ref. 10], game participants found out that using fixed search patterns like

spiralling .,nwards or outwards from the datum are not gc d strategies since they can

be exploited by the submarine. Random movements are thus used to ensure that the
suln-1111-311C CI-AI-11-10k expl•oit. an-y o th, 4l ic ptrs s•.-- y

From some cf the analytical results discussed in related games, we saw that the

helicopter should always attempt to distribute its search efforts as uniformly as possible

over the entire FOC to be searched. This is done on the assumption that the submarine

can be an-where in the speed FOC. Ilowever this randomization of the positions of the

dip is 'expensive' for the helicopter. The helicopter has a limited mission time and two

dips placed far apart wil' consume much of this limited time . It will be more efficient for

the helicopter to search within a localized area by carefully placing non-overlapping dips.

This again may not be optimal since the submarine may be located at some distance

away from the helicopter localized search area and thus cannot be detected at all. The

helicopter has to compromise between conducting randomized search and localized

search.

Another factor to consider is whether the hel'copter should search on the edge

of the FOC rather than the interior. If it is known that the submarine is always moving

away from the datum, clearly the optimal strategy for the helicopter is also to search on

the edges. The amount of edge searches to be used will also be included in the strategy

of the helicopter.

17
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To be precise, the helicopter at various times undertakes local searches that are
either in the interior (inside) or on the edge of the FOC. The local searches are a

succession of dips that are designed to be efficient at covering either its edge or its

interior. To avoid the possibility of concentrating too much effort on a small part of the
FOC , the neiicopter occasionally abandons what he is doing and starts again. These

moments when a new local search is started are called 'restarts'. The probability that a

restart occurs after each dip is a constant (P(Restart)) that is part of the helicopter

strategies. After each restart , the helicopter chooses a new interior point with

probability, P(interior), otherwise a new edge point , and begins making another local

search until another restart. The helicopter's first local search is always of the interior

type , and since the location of the first dip is especially important , r, (the radial location

of the first dip in the speed circle) is also included as part of the helicopter strategy.
Although an early dip will correspond to having a smaller FOC, some advantage will

also be lost since the position is also near the edge and some of the area coverea by the

sonar detection area will be wasted outside the FOC. Using the unit speed circle, r1 can
vary- from 0 to 1.0. In our simulation model, pure strategies h for the helicopter are thus

defined in terms of various combination of rl, P(Restart) and P(interior)

h = (r, , P(Restart) , P(inierior))

A simple way of determining the relationship of times between successive dips

of the helicopter is to use the concept of the unit speed circle. If the helicopter chooses

a new point (x,:) in the unit speed circle from its previous position (x,y) at time t, let t'

be the time that he arrives there. Travellinq the physical distance from (x,')Ut totieoj(xj')Ut - (x"Yj-)U1'l
(x',y')Ut' requires a time of - Therefore, t' must satisfy the

equation

lD + I(x,)Ut - (x',y')Ut' ' (3.1)
V

Equation (3.1) can be rearranged to obtain Equation (3.2), a quadratic equation in I'.

(t + D - i')' W ) - y') 2 t(3.2)
fl-i) ) -
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Solving the equation (3.2), we have

d - abc + e

t' )zI where

a= /x2+y2 -U

23 2b=<x, +;--

c = cosine Jangle between (xyy and <x'y")]J

d=l1 D

"2 2C

+b2d -a 2b'(l -c 2)- 2abcd

Notice that T is independent of t when D = 0 and the relationship between t and t' is

multiplicative.

C. GAME THEORY

To formulate our search problem as a two-person zero sum game, we define ihe pure

strategies u;ed by the helicopter to be h = (r1,P(Resiart), P(interior)) and that used by

the submarine to be s = (r2, avoidance type) The payoff in this game is the probability

of the submarine being detected , P(h,s) . The helicopter, being the maximizing player,

will attempt to achieve

max, Iin, Pd(h,s)

While the submarine, being the minimizing player, will attempt to do the opposite by

achieving

min. maxA Pd(h,s)
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The value of the game v, is thus given by

min, maxh Fd(h,s) . v < maxh min, Pd(h,s) (3.3)

D. MODIFIED RANDOM SEARCH EQUATION

In his Expanding Area Search Experiment, Washburn considers the case of an

evader who knows that he is spotted at time t and maneuvers away at speed U to evade

detection. The searcher starts the search after a time delay , rT using speed V and sweep

width w (Detection occurs when the target is within -!- from searcher ). He shows that
2

the probability of detection obtained in his experimental results is closely approximated

by the equation

= 2 - (3.4)

= 1 - e-U2;- (3.5)

The assumptions used to derive the equation are -

a Searcher searches randomly, which is a crucial assumption

* Detections in non-overlapping time intervals are independent

The formula is derived by reasoning that is the ratio of area searched in dr to

area of farthest-on-circle at time r . and is theiefore the detection probability during the

infinitisirnal interval dr . Summing over the entire search period we obtain the averal 2

number of detections in (r,, i) as

n(t) wd 'w 1 for 1> T, (3.6)
fr TUT2 7rL IT

From the assumptions above, the number of detections in (r,,t) is a Poission random

variable and the probability of no detection is therefore equal to e-') . The probability

of detection is therefore I - e-,1) as given in Equations (3.5).

Our flaming datum problem is different from Washburn's search experiment in that:

I. The searcher does not have a continuous search capability.
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2. The target knows the position of the searcher whenever he makes a sonar dip.

We can derive a similar equation for our problem but modified to be

d I e jeorrh red

,l f FOC area (3.7)

-effcrcnve dp ae
/ (time per look)

= 1-e- C JO.e a' (3.8)

The "time per look" represents the average amount of time between any two successive.

dips of the helicopter. It can be reasoned to be equal to D + + k2(1 ) . D

represents the dipping time which is a constant in our game while k, and k2 represent the

amount of 'flying around' the helicopter makes in covering the FOC. Since is the

time taken to fly across half of the FOC, k2 therefore measures the average amount of

coverage of the entire FOC. The value of its upperbound is 2.0 which repesents the

situation where the helicopter is always flying across and along the diameter of the FOC.

k, is introduced because the helicopter must fly some fraction of its detection radius

before making the next dip to avoid redundant coverage. The FOC area is given by

-r[P r-' nrd t)he evnrPez-,."n rilesi'p iej

eflect-e fF area

Pd= I - 2J2 (3.9)

We also introduce k3 to account for inefficiencies in covering the FOC area with circles,

and k4 because search will sometimes start after Tr, the time the helicopter re 'ches the

edge of the FOC. The final expression is thus given below;

S (D k(•- /, L•)T)

Pd= 1 - FJ.- C -r• 2, 2 ,l (3.10)

where

6 U - submarine speed

* V - helicopter speed
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* R - cookie cutter radius

e D - time delay in dipping

ST, = ( L , time at which helicopter reaches edge of FOC.

The quantity

k31rR (3.11)2
RU

(D + A-,' V- + k2( "- )T)

is analogous to the search rate given by Vw in equations (3.4) to (3.6).

n(t) in our modified equation is therefrire given by

S= k3 R dr (3.12)

Performing the integration, we get:

n(i) kj3R 2  
__1 1U(D + AIq( T7 ) , + Q-L7

2R T
R U R313

k2k'- log i(D + k1( -) + k2( - )(T, + Q I(

D (R))2 ( k R , R U*C( +k (-ý- I T +k( I ))[D + knk "7) + k2( • )t]

The value of our search game should be approximately Pd if kj, k2, k3 and k4 are chosen

to make equation (3.10) fit the simulation data as closely as possible.
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IV. METHODOLOGY

A. SIMULATION MODEL

Simulation models were used to determine the detection probability for each pair

of helicopter-submarine strategies at each time t (, •_ t < r' ). Multiple programs

were written since the submarine strategies cannot be easily generalised in a single

program. Each program consisted of all the helicopter strategies and a single type of

submarine strategy. The source codes are written in FORTRAN and implemented in the

IBM 3033. The flow charts for the programs are found in appendix A. A total of 5000

runs are done for each program in order to obtain a precision of at least 10 % for small

(0.04) probability of detection estimates. The coefficient of variation is given by

standard deviation Lo t- -:I)mean p(4.!)

Each ruu• is cu;lidciod " Dinomiil tUlm w iAth outcome, A" , I or ^0alu 1and ruils aTe

conducted to get the probability of detection estimate

n

X, (4.2)
iIl

B. SOLVING THE GANME

The detection probabilities (or payoffs) from the various outputs of the various

simulation models are read into a payoff matrix using a simple FORTRAN program for

each time t (t>;,) . These payoff matrices for each time t are then solved sequentially

using a linear programming subroutine DDLPRS available in New IMSL Library. If

x = (xh) and y = (y,) represents the probability distribution for the helicopter and

submarine strategies respectively, and v is the value of the game, the linear program can

be formulated as

Minimize v subject to
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Lys, Pd(h,s) V, V , (4.3)

Zy• = 1(4.4)

The primal of the LP solution gives the mixed strategies of the submarine while the dual

solution gives the solution of the helicopter. Optimal strategies and the value of the

game are obtained for given values of U,V, r,, R and t. A Flow chart for the program

is also given in Appendix B.

C. MODEL FITTING

Although, the Random Search Equation (3.10) has five parameters, there are

actually three dimensions in that expression. This can be easily scen by substituting
into Equation (3.10) where we obtain the dimensions to be [ +'-')

and R-R-) . Hence, only 21 = 8 combinations of dimensions are required to

of the various game matrices obtained at each time t, are then used to estimate the

constants k,, k2 and k3 and C4 . The curve fitting is done using a GRAFSTAT routine

(non. linear regression curve fitting) available in NPS IBM 3033. Individual curves for

each set of(re , U, V, R, D) are fitted to get estimate of k, , k2 , k3 and k, . These curves

are then combined to get one overall estimate for the unknown parameters. Statistical

analysis is then performed to check the goodness of the fiz.

D. COMPARISON WITH DYNAMIC SEARCH GAME MODEL

The values of the probabity of detection obtained is then compared with the results

given by the Dynamic Search Game by Thomas and Washburn [Ref. 9]. The results of

the Dynamic search game was computed using a Fortran program developed by

Washburn.
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V. RESULTS

A. TABLES

1. Strategies Used

A total of 10 submarine and 27 helicopter strategies were explored in the final

stages of our experimentation. They are listed in Tables 1 and 2 respectively.

Table 1. SUBMARINE STRATEGIES USED

strategy r, Avoidance type

Y1 0.2 Avoid helicopter

Y.Y 0.4 Avoid helicopter
Y3 0.6 Avoid helicopter

.Y.'4 0.8 Avoid helicopter

Ys 1. Avoid helicoptcr
.v•. 0.2 Avoid datum inI

Y_ 0.A Avoid datum

ya0.6 AN-old datum
" 0.$ Avoid datum

L Y10 i.0 Avoid datum

.Note

"* Avoid helicopter refers to the strategy of moving directly away from the
helicopter's last dip.

"* Avoid Datum refers to moving directly away from datum (centre of FOC)
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Table 2. HELICOPTER STRATEGIES USED

strategy P (Restartl search type) P (interior search) )

x1 0.25 0.25 0.25 -

X2 0.25 0.25 0.5 _

X3 0.25 0.25 0.75 -
X4 0.25 0.5 0.25_

X3 0.25 0.5 0.5

X6 0.25 0.5 0.75

x-! 0.25 0.75 0.25

x0 0.25 0.75 0.5

xQ 0.25 0.75 0.75

x10 0.5 0.25 0.25

x11 0.5 0.25 0.5

1. 0,5 0.25 0.75

X13 0.5 0.5 0.25

x14  0.5 0.5 0.5
x_._ 0.5 0.5 0.75

xI. t.:1 0. 75 V.Z• .. .

x1. 0.5 0.75 0.5

x13 0.5 0.75 0.7.5

x,• 0.75 _ 25 0.25

X'o 0.75 0.25 0.5

x_ , 0.75 0.25 0.75
x_ 2 0.75 0.5 0.25

X-3 0.75 0.5 0.5

X_ _ 0.75 0.5 0.75

x_ 3 0.75 0.75 0.25

_ 26 0.75 0.75 0.5
0.75 0.75 0.75

2. Parameters Used

The various sets of parameters used are given in the Table 3 This is the

nunimit i number of sets of parameters required to check if the simulation model could
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be approximated by the random search equation (3.10). Notice that normalized values

are used where R and V are both equated to 1.0. This is done in order to simplilf the

expression used in the non-linear package.

Table 3. PARAMETERS USED

U V TV R D
0.1 1 25.0 1 2
0.1 1 25.0 1 0

0.2 1 22.9 1 2
0.2 1 22.9 1 0

0.1 1 21.8 1 2
0.1 1 21.8 1 0

0.2 1 20.0 1 2
0.2 1 20.0 1 0-

3. Simulation Results

For a given set of of V,U, Tr ,D and R, simulation results were obtained for the
above combinations of submarine-helicopter strategies shown above. A se.mple output.

of one such result is shown in Table 5 of Appendix C. The result shows the probability

of detection for each time t where Te•1<tP'. A total of 270 data sets were generated for

each set of parameter values.

4. Game Results

The value of the game together with the optimal strategies was then obtained

by solving each 27 x 10 game matrix for each time t, (r,<t<t*). A sample output for a

particular game is shown in Table 6 as Appendix D. The entire prcess was repeated

seven more times to obtain results for eight different sets of (U, V, ,.R,D) A sample

output is shown in Table 7 as Appendix E.

5. Results of Curve fitting

The values obtained from the eight sets of parameter values are then used to

estimate one overall estimate of the unknown k,,k2,k/ and k, of Equation (3.10). The

27

.i~ st .~ .- d-- *....'



estimated k's as well as a statistical sunmnary of the fit is shown in Table 4 below. .

"Fable 4. SFATISTICAL SUMMARY

TABLE OF COEFFICIENTS

628 OBSERVATIONS R-SQUARED a 0.99281 STANDARD ERROR k 0.018864
4 COEFFICIENTS ADJ R-SQUARED a 0.99278 Z6 ITERATIONS

0.95 CONFIDENCE LIMITS
COEFFICIENT ESTIMATE STD ERR T STAT SIG LEVF.L LOWER UPPER
KI 0.00021092 2.9340E-9 71889 0 0.00021091 0.00021093
KZ 0.83762 1.1686E-5 71675 0 0.8376 0.83765K3 2.014,6 3.3727E-3 300.82 0 1.008 1.0212

K4 .19498 2._5286E-6 77112 0 0.19498 0.19499

B. GRAPHS

1. Simulation data and Fitted Curves

The values of the games For the eight sets of (U, V, r,,R,D) are shown in Figure

(5) and (6). The continous curves represent the curves fitted using non-linear regression

while the symbols are actual data from the simulation results. Each curve represents a

particular set of parainter values, and all the eight fitted curves use the same kl,kA, k3 and

k..
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Figure 5. Probability of Detection Curves
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Figure 6. Probability of Detection Curves
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2. Random search versus Dynamic Search Model

In Figure (7) overleaf, the numbers represent the results from the Dynamic

search model while the symbols shows the data from the simulation model. The fitted

curves arc also drawn in the figure. The parameters used are also shown in the legend

just below all the curves. The fbur random search model curves were just reproduced

from Figures (5) and (6) above.
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VI. ANALYSIS OF RESULTS

A. STRATEGIES

I. Submarine

The results for the optimal strategies of the submarine show that the submarine

generally favours staying near the edge of the FOC whenever it utilizes the class of'
strategies of moving away from the helicopter's last dip. The other class of strategies of

ignoring the helicopter and just moving away from the datum is not often used. If it is

used, the results shows that the submarine favours staying near the datum and will start
moving away once the helicopter search begins.

2. Helicopter

The results show that the helicopter optimal strategies are mainly to have a

higher porportion of localized interior search. It seems that too much 'flying around' is

not optimal as only a limited number of dips can be conducted in the limited mission
time of the helicopter. Also, it seems that much effort should be placed on searching the

interinr nf tht, FOr, Though some search must still be allocated to searching the edges
so as to deter the submarine from staying at the edge of the FOC.

B. MODEL FITTING
"The detection probability (or value of the game) was well estimated by the values

obtained using- the non-linear regression software in GRAFSTAT. The correlation

coefficient is found to be close to I and there is no statistical evidence to indicate that
these unknowns do not contribute to the equation at all.

These estimated values also give us an idea on the way optimal searches are
conducted. k, is approximately zero which shows that the helicopter need not fly a

minimum fraction of its detection radius to its next dip. The value of' " 2 is about .83.
This is fairly close to the mean distance of any two points in a c:le as given by Kendall

in his book, 'Geometric Probability' I Ref, II]. The exact value of the mean was derived
128SR

to be (-aL-) .905R. T'his shows that the helicopter was picking points fairly
uniformly over the FOG. A3 is almost equal to 1 and this shows that the helicopter was

fairly effectively in covering the FOC area with its cookie cutter circles. This could be
because most of the dips occur in the interior of the FOC. kA is approximately 0.2 which
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shows that most of the initial dips of the helicopter occurs near but not at the edge of

the FOC.

C. COMPARISON WITH RESULTS OF DYNAMIC SEARCH GAME

The results given by the Dynamic search game gives a more pessimistic e3timate of

the probability of detection as compared to the simulation results. Generally, the results

are about .07 to .15 lower. This shows that the 'nimbless' assumption used in the

Dynamic search game outweighs the 'motionless between dips' assumption. There is

also a greater difference when the value of D is zero. It is not clear which result is better

since they do not differ very much.

D. WEAKNESS

The general weakness of this method is in not being able to investigate enough of
the strategies. There are infinitely many strategies that can be used by the helicopter and

submarine. However, many of them will tend to be dominated by certain classes of

strategies. The assumptions used to derive the random search equation for the

heliconter can again be criticized with the same areument as those used with any random

search model. An example is the independent detections in non-overlapping intervals.

The submarine motion is assumed constant except for instantaneous changes in

course. This assumption is not important since the submarine is always moving slowly

and its turning radius is small relative to the detection radius of the active sonar. In the

simulation, the submarine is able to determine the bearing of the dips accurately. This

is obviously optimistic as to the direction finding capability of the submarine. The

model could later be modified to account for transmission losses or other factors that

will not provide such an accurate bearing of the sonar dips. The cookie cutter model is

also a basic model for any detection system. Enhancement can perhaps be included but

not much utility can be gained since the model itself is crude just like any other random

search model.

3
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VII. PRACTICAL USES/APPLICATION

A. COMPARISON OF AIRCRAFT AND HELICOPTER PERFORMANCES

The usefulness of such a technique is that it could be used together with other search
games such as the Dynamic Search Games by Thomas and Washburn or The Hlelicopter

Search Game by Danskin to compare aircraft platforms that have different speeds,

different distances to datum and detection performances. For example, helicopters are

normally located near the impending threat and are normally close to the flaming datum

(if any) while aircraft like the P-3 Orion (carrying sonobouys) are usually located much

further away but have greater speed. The question is which platfbrm performs better.

i3
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V111. CONCLUSION

The results of this experiment is yet another approximated solution to the two

dimensional flaming datum problem. The randcm search equation (3.10) developed

using the unknowns derived from the simulation can be used to compute a rough

estimate of the search capability of a helicopter starting its search or it can similarly be

used by a submarine to assess its probability of being detected. The computation can

be done easily and quickly and it can also give us an idea of the various interactions of

the basic parameters of any scenario. The results given by the Dynamnic search game

also support the simulations results. The attitude to be taken is that this is a plactical

tool to use until something better comes along or when general analytical techniqucs
become available.

The exploration of various strategies Lsed by both helicopter and submarine is also

very useful as we discover that certain classes of strategies were always dominated by

other classes. However, the optimal strategies obtained in the study cannot be taken as

the 'true' optimal strategies to be used since there are infinitely many more to be

explored. Rather, the results should provide us some idea of the distribution of search

efforts (helicopter) or hiding efforts (submarine) especially when there are conflicting

goals.
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APPENDIX A. FLOW CHART OF SIMULATION PROGRAM
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Figure S. Flow chart for simulation program
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APPENDIX B. FLOW CHART FOR SOLVING MATRIX GAME
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Begin

Read in Data from
various helicopter -submarine
output data files into arrays

Initialize Game Matrix
for time t

Call External Subroutine DDLRPS
to solve LP

II Write Game :
Values -

Output

JSet t = >.. t*

Figure 9. Flow chart for solving matrix game using two person zero sum

methodology
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Z APPENDIX C. SAMPLE OUTPUT FROM A SIMULATION MODEL

Table 5. SAMPLE OUTPUT FROM A SIMULATION MODEL

0. 00000000F+O0
0. O00000000E+O0
O. OOOOOOOOOE+0O
0.999999791E-02
0.399999991E-01
0.799999833E-01
0.899999738E-01
0.999999642E-01
0.129999995
0.139999986
0.159999967
0.169999957
0.169999957
0.179999948
0.209999979
0.219999969
0.229999959
0.250000000
0.259999990

0.269999981
0.279999971
0.279999971
0.289999962
0.309999943
0.309999943
0.309999943
0. 309999943
0.319999993
0.319999993
0.329999983
0.3219999983
0.339999974
0,339999974
0.339999974
0.339999974
0.339999974
0.339999974
0.339999974
0.339999974
0.339999974
0.339999974
0.339999974
0.339999974
0.339999974
0.339999974
0. 339999974
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0. 339999974
0. 339999974
0. 339999974
0. 339999974
0. 339999974
0. 339999974
0.339999974
0. 339999974
0. 339999974
0. 339999974
0.339999974
0. 339999974
0.339999974
0.339999974
0.339999974
0.339999974
0. 339999974
0. 339990974
0. 339999974
0.339999974
0.339999974
0.339999974
0. 339999974
0. 339999974
0. 339999974
0.339999974
0.339999974
0.339999974

0. 339999974

PRST 0.0750000000 PAREA 0.750000000 R .00000000

1.00000000 0.100000024 20.-0000000 0. 0000000E+00
100. 000000
1. 00000000 27.5000000 0.250000000 0.OOOOOOOOOE+00
26. 8292694

Note: The output above are the detection probabilities obtained for each time t

(25•5< 100) when the helicopter utilizes strategy x9 against the submiarine Strategy ys The

time of the first dip was computed to be 26.829. This is because the initial dip was inside

the FOC.

The parameters used in this model are given below:

*V= 1, U= .1 D D0, = 100, L==27.5 , R= 1.0 , r,= 0.25, r2 = 1.0 ,
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APPENDIX D. SAMPLE OUTPUT AFTER SOLVING A GAME

Table 6. SAMPLE OUTPUT OF VALUE AND OPTIMAL STRATEGIES OF
GAME WITH TIME

TIME 50

OBJECTIVE - 0.5218

PRIMAL
Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y1O

0 0000 0.0994 0.0000 0.7453 0. 1553 0.0000 0. 0000 0. 0000 0. 0000 0.0000

X1 X2 X3 X4 X5 X6 X7 X8 X9
0. 0000 0. 0000 0.0000 0.0000 0..0000 0.0000 0. 0000 0. 0000 0. 0000

X1O X.I X12 X13 X14 X15 X16 X17 X18
0.0 000 0. 0000 0.2112 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0.0000

(19 V'(20 2!2 I 2X22 X23 Y(24 .2(5 X.Z6 X(27
0. 0000 0. 0000 0.3975 0. 0000 0.0000 0.3913 0. 0000 0. 0000 0. 0000

Note: The output is for the case when time of detection is 50 time units. The parameters

used in this model is given below:

* U=.l

* D=O

t* = 100

* R =1.0

* L 27.5 giving T, 25
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APPENDIX E. SAMPLE OUTPUT OF GAME VALUES VERSUS TIMIE

Table 7. SAMPLE OUTPUT OF GAME VALUES OBTAINED

Time of Value Time of Value Time of Value
Detection (Prob. of Detection (Prob. of Detection (Prob. of

Detection) Detection) Detection)
25 0.0000 51 0.5243 77 0.5833
26 0.0849 52 0.5307 78 0.5872

27 0.1157 53 0.5350 79 0.5890
28 0.1600 54 0.5357 80 0.589 --

0.1800 55 0.5362 81 0.5891
30 0.2558 56 0.5362 82 0.59t)0-

31 0.2676 57 0.5362 83 0.5919
32 0.3176 58 0.5405 84 0.5921
33 0.3276 59 0.5407 85 0.5933
34 0.3650 60 0.5407 86 0.5976
35 0.3727 61 0.5448 87 0.5976
36 v).3969 62 0.5490 88 .5976-

37 0.4151 63 0.5491 89 0.51994

38 0.429S 64 0.5499 90 0.5994
39 0.4454 65 0.5575 91 0.5994

410 0.4,40 66 0.5653 92 0.6-10)
41 0.4596 67 0.5686 93 0.oo4o
42 0.4679 68 0.5725 94 0.6082

43 0.47S7 69 0.5734 95 0.6()89

44 0.4803 70 0.57.53 96 0.6089
45 0.4837 71 0.5753 97 0.6104
46 0.4963 72 0.5753 98 0.6104
47 0.4971 73 0.5754 99 0.6108
48 0.5059 74 0.5761 100 0.6108
49 0.5150 75 0.5761
50 0.5218 76 0.5767 1

Note-

* V= 1,U .1, =25,D =0, R= 1.
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